RFM Analysis for Effective Segmentation Using Python

RFM Analysis for Effective Segmentation Using Python

Introduction

In this article, we explore the powerful technique of RFM analysis for customer segmentation using Python programming. RFM analysis can provide valuable insights into customer behavior, allowing businesses to segment their customer base and develop targeted retention strategies. We cover the key steps involved in conducting RFM analysis, including data preparation, RFM score calculation, and segmentation. We also demonstrate how to visualize the results using Python libraries such as Pandas, Matplotlib, and Seaborn. By the end of this article, you will have a solid understanding of how to use RFM analysis to gain valuable customer insights and develop effective segmentation strategies.

In this article, we will use Python to perform RFM analysis on a dataset of online retail transactions. The dataset can be found at the following link: https://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online%20Retail.xlsx

First, we will import the necessary libraries and load the dataset:

#import modules

import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 
import datetime as dt

#Read and Show data

df = pd.read_excel(“Online Retail.xlsx”)
data.head()

 InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountry
053636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:002.5517850.0United Kingdom
153636571053WHITE METAL LANTERN62010-12-01 08:26:003.3917850.0United Kingdom
253636584406BCREAM CUPID HEARTS COAT HANGER82010-12-01 08:26:002.7517850.0United Kingdom
353636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:003.3917850.0United Kingdom
453636584029ERED WOOLLY HOTTIE WHITE HEART.62010-12-01 08:26:003.3917850.0United Kingdom

# checking data information
data.info()
# checking missing data
df=data.isna().sum()
df

# check shape
data.shape

(406829, 8)

 

Next, we will clean and preprocess the data. We will remove rows with no CustomerID

and duplicate data.

 

# remove data with no CustomerID
data = data[pd.notnull(data[‘CustomerID’])]
# drop duplicate
filtered_data = data[[‘Country’,’CustomerID’]].drop_duplicates()

# check shape
data.shape

(406829, 8)

Next we will filter top ten country from where customer purchase.

#Top ten country’s customer
filtered_data.Country.value_counts()[:10].plot(kind=’bar’)

uk_data=data[data.Country==’United Kingdom’]
uk_data.info()
uk_data.describe()

 QuantityUnitPriceCustomerID
count361878.000000361878.000000361878.000000
mean11.0770293.25600715547.871368
std263.12926670.6547311594.402590
min-80995.0000000.00000012346.000000
25%2.0000001.25000014194.000000
50%4.0000001.95000015514.000000
75%12.0000003.75000016931.000000
max80995.00000038970.00000018287.000000

uk_data = uk_data[(uk_data[‘Quantity’]>0)]
uk_data.info()
uk_data = uk_data[(uk_data[‘UnitPrice’]>0)]
uk_data.info()
uk_data.describe()

 QuantityUnitPriceCustomerID
count354321.000000354321.000000354321.000000
mean12.0137952.96399415552.486392
std189.26795617.8626551594.527150
min1.0000000.00100012346.000000
25%2.0000001.25000014194.000000
50%4.0000001.95000015522.000000
75%12.0000003.75000016931.000000
max80995.0000008142.75000018287.000000

 

 

uk_data=uk_data[[‘CustomerID’,’InvoiceDate’,’InvoiceNo’,’Quantity’,’UnitPrice’]] uk_data

 CustomerIDInvoiceDateInvoiceNoQuantityUnitPrice
017850.02010-12-01 08:26:0053636562.55
117850.02010-12-01 08:26:0053636563.39
217850.02010-12-01 08:26:0053636582.75
317850.02010-12-01 08:26:0053636563.39
417850.02010-12-01 08:26:0053636563.39
54188915804.02011-12-09 12:31:00581585121.95
54189013113.02011-12-09 12:49:0058158682.95
54189113113.02011-12-09 12:49:00581586241.25
54189213113.02011-12-09 12:49:00581586248.95
54189313113.02011-12-09 12:49:00581586107.08

354321 rows × 5 columns

uk_data[‘TotalPrice’] = uk_data[‘Quantity’] * uk_data[‘UnitPrice’] uk_data

 CustomerIDInvoiceDateInvoiceNoQuantityUnitPriceTotalPrice
017850.02010-12-01 08:26:0053636562.5515.30
117850.02010-12-01 08:26:0053636563.3920.34
217850.02010-12-01 08:26:0053636582.7522.00
317850.02010-12-01 08:26:0053636563.3920.34
417850.02010-12-01 08:26:0053636563.3920.34
54188915804.02011-12-09 12:31:00581585121.9523.40
54189013113.02011-12-09 12:49:0058158682.9523.60
54189113113.02011-12-09 12:49:00581586241.2530.00
54189213113.02011-12-09 12:49:00581586248.95214.80
54189313113.02011-12-09 12:49:00581586107.0870.80

354321 rows × 6 columns

uk_data[‘InvoiceDate’].min(),uk_data[‘InvoiceDate’].max()

(Timestamp('2010-12-01 08:26:00'), Timestamp('2011-12-09 12:49:00'))

PRESENT = dt.datetime(2011,12,10)
uk_data[‘InvoiceDate’] = pd.to_datetime(uk_data[‘InvoiceDate’])
uk_data

 CustomerIDInvoiceDateInvoiceNoQuantityUnitPriceTotalPrice
017850.02010-12-01 08:26:0053636562.5515.30
117850.02010-12-01 08:26:0053636563.3920.34
217850.02010-12-01 08:26:0053636582.7522.00
317850.02010-12-01 08:26:0053636563.3920.34
417850.02010-12-01 08:26:0053636563.3920.34
54188915804.02011-12-09 12:31:00581585121.9523.40
54189013113.02011-12-09 12:49:0058158682.9523.60
54189113113.02011-12-09 12:49:00581586241.2530.00
54189213113.02011-12-09 12:49:00581586248.95214.80
54189313113.02011-12-09 12:49:00581586107.0870.80

354321 rows × 6 columns

RFM Analysis

Here, you are going to perform following opertaions:

  • For Recency, Calculate the number of days between present date and date of last purchase each customer.
  • For Frequency, Calculate the number of orders for each customer.
  • For Monetary, Calculate sum of purchase price for each customer.

# RFM calculation
rfm= uk_data.groupby(‘CustomerID’).agg({‘InvoiceDate’: lambda date: (PRESENT – date.max()).days,’InvoiceNo’: ‘count’,’TotalPrice’: lambda price: price.sum()})
rfm

 

CustomerID InvoiceDate InvoiceNo TotalPrice
12346.0325177183.60
12747.021034196.01
12748.00459533719.73
12749.031994090.88
12820.0359942.34
18280.027710180.60
18281.0180780.82
18282.0712178.05
18283.037562094.88
18287.042701837.28

3920 rows × 3 columns

# ‘InvoiceDate’, ‘TotalPrice’, ‘InvoiceNo’
# Change the name of columns
rfm.rename(columns={‘InvoiceDate’:’recency’,’InvoiceNo’:’frequency’,’TotalPrice’:’monetary’})
rfm

CustomerID recency frequencymonetary 
12346.0325177183.60
12747.021034196.01
12748.00459533719.73
12749.031994090.88
12820.0359942.34
18280.027710180.60
18281.0180780.82
18282.0712178.05
18283.037562094.88
18287.042701837.28

rfm[‘recency’] = rfm[‘recency’].astype(int)
rfm[‘frequency’] = rfm[‘frequency’].astype(int)
rfm[‘monetary’] = rfm[‘monetary’].astype(int)
rfm

3920 rows × 3 columns

CustomerIDrecency frequency monetary 
12346.0325177183
12747.021034196
12748.00459533719
12749.031994090
12820.0359942
18280.027710180
18281.0180780
18282.0712178
18283.037562094
18287.042701837

3920 rows × 3 columns

Computing Quantile of RFM values

Customers with the lowest recency, highest frequency and monetary amounts considered as top customers.

We will do it using Data binning .

rfm[‘r_quartile’] = pd.qcut(rfm[‘recency’], 4, labels=[‘1′,’2′,’3′,’4’])
rfm[‘f_quartile’] = pd.qcut(rfm[‘frequency’], 4, labels=[‘4′,’3′,’2′,’1’])
rfm[‘m_quartile’] = pd.qcut(rfm[‘monetary’], 4, labels=[‘4′,’3′,’2′,’1’])
rfm.head()

CustomerID recencyfrequency  monetary r_quartilef_quartile m_quartile 
12346.0325177183441
12747.021034196111
12748.00459533719111
12749.031994090111
12820.0359942122

rfm[‘RFM_Score’] = rfm.r_quartile.astype(str)+ rfm.f_quartile.astype(str) + rfm.m_quartile.astype(str) rfm.head()

CustomerIDrecency  frequency monetary r_quartile f_quartilem_quartile  RFM_Score
12346.0325177183441441
12747.021034196111111
12748.00459533719111111
12749.031994090111111
12820.0359942122122

# RFM Score
rfm[‘RFM_Score’].value_counts()

111    409
444    345
211    186
433    178
344    169
      ... 
241      7
141      5
431      4
413      4
114      1
Name: RFM_Score, Length: 61, dtype: int64

rfm[‘RFM_Score_num’] = rfm.r_quartile.astype(int)+ rfm.f_quartile.astype(int) + rfm.m_quartile.astype(int)
rfm.head()

CustomerIDrecencyfrequencymonetaryr_quartilef_quartilem_quartileRFM_Score 
12346.03251771834414419
12747.0210341961111113
12748.004595337191111113
12749.0319940901111113
12820.03599421221225

# Creating custom segments

# Define rfm_level function
def rfm_level(df):
    if df[‘RFM_Score_num’] >= 10:
        return ‘Low’
    elif ((df[‘RFM_Score_num’] >= 6) and (df[‘RFM_Score_num’] < 10)):
        return ‘Middle’
    else:
        return ‘Top’

# Create a new variable RFM_Level
rfm[‘RFM_Level’] = rfm.apply(rfm_level, axis=1)

# Print the header with top 5 rows to the console
rfm.head()

CustomerIDrecencyfrequencymonetaryr_quartilef_quartilem_quartileRFM_ScoreRFM_Score_numRFM_Level
12346.03251771834414419Middle
12747.0210341961111113Top
12748.004595337191111113Top
12749.0319940901111113Top
12820.03599421221225Top

RFM_Levelrecencyfrequencymonetary
Low190.04591814.948129258.973639
Middle71.13029949.7144641059.506234
Top19.335088225.4385964651.303509

rfm.RFM_Level.value_counts()

Middle 1604

Low 1176

Top 1140

Name: RFM_Level, dtype: int64

Segmentation using k-means clustering (unsupervised)

K-means assumptions:

Symmetric distribution of features/variables
Variables with same average values
Variables with same variance

# Plot distribution
plt.figure(figsize=(7, 10))
plt.subplot(3, 1, 1)
sns.histplot(rfm[“recency”], kde=True, bins=20)

plt.subplot(3, 1, 2)
sns.histplot(rfm[“frequency”], kde=True, bins=20)

# Plot distribution of var3
plt.subplot(3, 1, 3)
sns.histplot(rfm[“monetary”],kde=True, bins=20)

# Show the plot
plt.show()

rfm.columns

Index([‘recency’, ‘frequency’, ‘monetary’, ‘r_quartile’, ‘f_quartile’, ‘m_quartile’, ‘RFM_Score’, ‘RFM_Score_num’, ‘RFM_Level’], dtype=’object’)

# Print the average values of the variables in the dataset
print(‘mean : \n’, rfm[[‘recency’, ‘frequency’, ‘monetary’]].mean())

mean :

recency 91.742092

frequency 90.388010

monetary 1863.899745

dtype: float64

# Print the standard deviation of the variables in the dataset
print(‘std: \n’, rfm[[‘recency’, ‘frequency’, ‘monetary’]].std())

std:

recency 99.533485

frequency 217.808385

monetary 7482.810958

dtype: float64

Apply transformer to remove skewness

Apply Standard Scaler for same mean and variance

rfm.head()

CustomerIDrecencyfrequencymonetaryr_quartilef_quartilem_quartileRFM_ScoreRFM_Score_numRFM_Level
12346.03251771834414419Middle
12747.0210341961111113Top
12748.004595337191111113Top
12749.0319940901111113Top
12820.03599421221225Top

# apply yeo-johnson transformers
from scipy.stats import yeojohnson

df = pd.DataFrame()
df[“CustomerID”] = rfm.index

for col in [‘recency’, ‘frequency’, ‘monetary’]:
    y, lmbda = yeojohnson(rfm[col])
    df[col] = y

df


CustomerID
recencyfrequencymonetary
012346.09.4811580.6948797.350116
112747.01.2001244.7228906.042678
212748.00.0000008.6941247.009467
312749.01.5504905.4006396.029753
412820.01.5504904.1552705.241050
391518280.09.0873912.4187074.232865
391618281.08.0746912.0950813.690085
391718282.02.4633242.5887724.225605
391818283.01.5504906.7900705.681812
391918287.05.1436134.3287455.611509

3920 rows × 4 columns

# Plot distribution
plt.figure(figsize=(7, 10))
plt.subplot(3, 1, 1)
sns.histplot(df[“recency”], kde=True, bins=10)

plt.subplot(3, 1, 2)
sns.histplot(df[“frequency”], kde=True, bins=10)

# Plot distribution of var3
plt.subplot(3, 1, 3)
sns.histplot(df[“monetary”],kde=True, bins=10)

# Show the plot
plt.show()

# solving same mean/avg and variance issue
import sklearn.preprocessing as preproc

features = [‘recency’, ‘frequency’, ‘monetary’]
# Standardization – note that by definition, some outputs will be negative
df[features] = preproc.StandardScaler().fit_transform(df[features])
df

 CustomerIDrecencyfrequencymonetary
012346.01.623997-2.3820593.217638
112747.0-1.7387880.7305261.405623
212748.0-2.2261383.7992372.745524
312749.0-1.5965111.2542461.387711
412820.0-1.5965110.2919060.294625
391518280.01.464095-1.049997-1.102648
391618281.01.052855-1.300074-1.854901
391718282.0-1.225824-0.918582-1.112709
391818283.0-1.5965112.3279080.905489
391918287.0-0.1374050.4259560.808054

3920 rows × 4 columns

# Print the average values of the variables in the dataset
print(‘mean : \n’, df[[‘recency’, ‘frequency’, ‘monetary’]].mean().astype(int))

# Print the standard deviation of the variables in the dataset
print(‘std: \n’, df[[‘recency’, ‘frequency’, ‘monetary’]].std().astype(int))

mean :

recency 0

frequency 0

monetary 0

dtype: int64

std:

recency 1

frequency 1

monetary 1

dtype: int64

Now our features are ready. We will apply k-mean clustering. Apply k-means now

# Import KMeans
from sklearn.cluster import KMeans
# assume k/cluster number/group number = 3
# Initialize KMeans
kmeans = KMeans(n_clusters=3, random_state=1)

# Fit k-means clustering on the normalized data set
kmeans.fit(df[features])

# Extract cluster labels
rfm[‘cluster_labels’] = kmeans.labels_
df[‘cluster_labels’] = kmeans.labels_

/usr/local/lib/python3.8/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to ‘auto’ in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

rfm

CustomerIDrecencyfrequencymonetaryr_quartilef_quartilem_quartileRFM_ScoreRFM_Score_numRFM_Levelcluster_labels
12346.03251771834414419Middle1
12747.0210341961111113Top0
12748.004595337191111113Top0
12749.0319940901111113Top0
12820.03599421221225Top0
18280.02771018044444412Low2
18281.018078044444412Low2
18282.07121781441449Middle1
18283.0375620941111113Top0
18287.0427018372212215Top1

3920 rows × 10 columns

df.cluster_labels.value_counts()

1 1624

2 1218

0 1078

Name: cluster_labels, dtype: int64

rfm.groupby(‘RFM_Level’).agg({
    ‘recency’: ‘mean’,
    ‘frequency’: ‘mean’,
    ‘monetary’: ‘mean’})

 recencyfrequencymonetary
Low190.04591814.948129258.973639
Middle71.13029949.7144641059.506234
Top19.335088225.4385964651.303509

rfm.groupby(‘cluster_labels’).agg({
    ‘recency’: ‘mean’,
    ‘frequency’: ‘mean’,
    ‘monetary’: ‘mean’})

cluster_labelsrecencyfrequencymonetary
019.401670234.7634515072.400742
165.76416351.161330929.342365
2190.40476214.909688270.268473

Find best k value

## Calculate sum of squared errors
sse = {}
# Fit KMeans and calculate SSE for each k
for k in range(1, 21):
    # Initialize KMeans with k clusters
    kmeans = KMeans(n_clusters=k, random_state=1)
    # Fit KMeans on the normalized dataset
    kmeans.fit(df[features])
    # Assign sum of squared distances to k element of dictionary
    sse[k] = kmeans.inertia_

sse

 

{1: 11760.000000000013,
 2: 6080.567689041685,
 3: 4709.937307327478,
 4: 3870.116603724802,
 5: 3319.490869277227,
 6: 2916.5075068200385,
 7: 2655.5748530820592,
 8: 2459.2276248472426,
 9: 2299.9953369555833,
 10: 2154.4760094876638,
 11: 2016.785702586328,
 12: 1896.2115029782149,
 13: 1814.3350578718046,
 14: 1733.105393862509,
 15: 1664.5963048437225,
 16: 1597.9977424250183,
 17: 1531.5951097080115,
 18: 1489.225635962716,
 19: 1436.2061701139564,
 20: 1391.496724909009}

## Plot sum of squared errors
plt.figure(1 , figsize = (6, 7))
# Add the plot title “The Elbow Method”
plt.title(‘The Elbow Method’)
# Add X-axis label “k”
plt.xlabel(‘k’)
# Add Y-axis label “SSE”
plt.ylabel(‘sse’)

# Plot SSE values for each key in the dictionary
sns.pointplot(x=list(sse.keys()), y=list(sse.values()))
plt.show()

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
points = pca.fit_transform(df[features])

df[‘PC_1’] = points[:,0]
df[‘PC_2’] = points[:,1]

df

 CustomerIDrecencyfrequencymonetarycluster_labelsPC_1PC_2
012346.01.623997-2.3820593.21763810.327716-1.753851
112747.0-1.7387880.7305261.4056230-2.1860940.716165
212748.0-2.2261383.7992372.7455240-5.116733-0.440139
312749.0-1.5965111.2542461.3877110-2.4214410.416584
412820.0-1.5965110.2919060.2946250-1.1721681.160378
391518280.01.464095-1.049997-1.10264822.056443-0.480331
391618281.01.052855-1.300074-1.85490122.4550890.240255
391718282.0-1.225824-0.918582-1.11270910.6082741.789366
391818283.0-1.5965112.3279080.9054890-2.7826060.218528
391918287.0-0.1374050.4259560.8080541-0.819899-0.331485

3920 rows × 7 columns

plt.figure(1 , figsize = (4, 4))
sns.scatterplot(x=’PC_1′, y=’PC_2′, data=df)
plt.show()

Apply k-means clustering

# Initialize KMeans
# k=4 from line chart /elbow method
kmeans = KMeans(n_clusters=4, random_state=1)

# Fit k-means clustering on the normalized data set
kmeans.fit(df[features])
# Extract cluster labels
rfm[‘cluster_labels’] = kmeans.labels_
df[‘cluster_labels’] = kmeans.labels_

/usr/local/lib/python3.8/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to ‘auto’ in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

rfm.cluster_labels.value_counts()

0 1086

1 1021

2 928

3 885

Name: cluster_labels, dtype: int64

    rfm.groupby(‘cluster_labels’).agg({
    ‘recency’: ‘mean’,
    ‘frequency’: ‘mean’,
    ‘monetary’: ‘mean’})

cluster_labelsrecencyfrequencymonetary
091.28913476.7053411426.324125
1216.77473115.449559280.197845
212.912716249.5431035484.925647
330.71073426.744633430.967232

plt.figure(1 , figsize = (8, 6))
sns.scatterplot(x=’PC_1′, y=’PC_2′, hue=’cluster_labels’, data=df, palette=”Set1″)

<AxesSubplot:xlabel='PC_1', ylabel='PC_2'>

df.head()

 CustomerIDrecencyfrequencymonetarycluster_labelsPC_1PC_2
012346.01.623997-2.3820593.21763800.327716-1.753851
112747.0-1.7387880.7305261.4056232-2.1860940.716165
212748.0-2.2261383.7992372.7455242-5.116733-0.440139
312749.0-1.5965111.2542461.3877112-2.4214410.416584
412820.0-1.5965110.2919060.2946252-1.1721681.160378

# Melt the normalized dataset and reset the index
# Assign CustomerID and Cluster as ID variables
# Assign RFM values as value variables
# Name the variable and value
df_melt = pd.melt(df, id_vars=[‘CustomerID’, ‘cluster_labels’],
                  value_vars=[‘recency’, ‘frequency’, ‘monetary’],
                  var_name=’Metric’, value_name=’Value’)
df_melt.sample(5)

 CustomerIDcluster_labelsMetricValue
967615402.00monetary-0.033478
755817897.00frequency0.810887
283616771.02recency-0.307374
423013248.01frequency-0.341760
151714973.00recency0.593712

## Visualize snake plot

# Add the plot title
plt.title(‘Snake plot of normalized variables’)
# Add the x axis label
plt.xlabel(‘Metric’)
# Add they axis label
plt.ylabel(‘Value’)

# Plot a line for each value of the cluster variable
sns.lineplot(data=df_melt, x=’Metric’, y=’Value’, hue=’cluster_labels’, palette=’Set1′)
plt.show()

Customer Cluster

Based on the RFM analysis that we conducted using the Online Retail dataset, we can identify several customer segments and develop retention policies for each of them. Here are some examples:

High-value (111): These are customers who have a high monetary value, high purchase frequency, and made a purchase recently. To retain these customers, businesses can offer them loyalty programs, special discounts, and personalized communication. Since these customers are already loyal and have a high spending potential, businesses can focus on building long-term relationships with them to ensure their continued loyalty.

New customers(144): These are customers who have made their first purchase recently. To retain these customers, businesses can offer them welcome discounts, personalized recommendations, and a seamless buying experience. Since these customers are still testing the waters and have not yet formed any brand loyalty, businesses need to focus on building a positive first impression to encourage repeat purchases.

At-risk customers(441): These are customers who have not made a purchase in a long time but have a high historical value. To retain these customers, businesses can offer them win-back campaigns, personalized offers, and targeted communication. Since these customers have not made a purchase in a while, it is important to remind them of the value that the business can offer and incentivize them to make another purchase.

Low-value customers(444): These are customers who have a low monetary value, low purchase frequency, and have not made a purchase recently. To retain these customers, businesses can offer them targeted promotions, personalized recommendations, and a simplified buying experience. Since these customers have not yet demonstrated a high spending potential, businesses need to focus on building loyalty by providing them with a positive buying experience and personalized recommendations.

By developing retention policies for each of these customer segments, businesses can improve customer loyalty, increase repeat purchases, and drive revenue growth. However, it is important to remember that customer behavior is constantly evolving, and retention policies need to be adapted and updated regularly to remain effective.

Limitation

Lack of context: RFM analysis only considers a customer’s recency, frequency, and monetary value of purchases. It does not take into account other factors that may influence customer behavior, such as demographics, psychographics, or external market conditions. This can limit the accuracy of the insights gained from RFM analysis.

Lack of predictive power: RFM analysis is based on historical data and does not provide predictive insights into future customer behavior. While it can help identify customer segments that are more likely to make a purchase in the future, it cannot predict with certainty when or how much they will spend.

Homogeneity of segments: RFM analysis may create customer segments that are too homogeneous, meaning that they may not capture the full diversity of customer behavior. For example, two customers may have the same RFM scores but have different motivations for making a purchase. This can limit the effectiveness of retention policies developed based on these segments.

Data limitations: RFM analysis relies on clean and accurate data. If there are missing or incorrect data points, it can lead to inaccurate insights and segmentation. Additionally, if the data is not up-to-date or lacks sufficient historical data, it may not accurately reflect customer behavior.

Assumption of equal weights: RFM analysis assumes that recency, frequency, and monetary value are equally important factors in determining customer behavior. However, this may not be true for all businesses and may vary based on industry, customer base, and business objectives. Therefore, it is important to consider other factors when developing retention policies.

Despite these limitations, RFM analysis can still provide valuable insights into customer behavior and help businesses develop effective retention policies. However, it is important to be aware of its limitations and supplement it with other data sources and analysis methods to gain a more complete understanding of customer behavior.

Application

RFM analysis can be applied in a variety of fields and industries where businesses have access to customer transaction data. Here are some examples:

E-commerce: Online retailers can use RFM analysis to segment their customers and develop targeted retention policies to encourage repeat purchases.

Banking and financial services: Banks and financial institutions can use RFM analysis to segment their customers based on their usage patterns and develop personalized services and offers.

Telecommunications: Telecommunications companies can use RFM analysis to segment their customers based on their usage patterns and develop targeted communication and retention policies.

Hospitality and travel: Hotels and travel companies can use RFM analysis to segment their customers based on their booking behavior and develop targeted marketing and retention policies.

Healthcare: Healthcare providers can use RFM analysis to segment their patients based on their utilization patterns and develop targeted communication and engagement strategies.

Subscription-based businesses: Subscription-based businesses can use RFM analysis to segment their customers based on their subscription behavior and develop targeted retention and upsell strategies.

Overall, any business that has access to transaction data can use RFM analysis to gain insights into customer behavior and develop targeted retention policies. However, it is important to supplement RFM analysis with other data sources and analysis methods to gain a more complete understanding of customer behavior.

Conclusion

RFM analysis is a powerful technique for customer segmentation that can provide valuable insights into customer behavior. By using Python programming to conduct RFM analysis, businesses can segment their customer base and develop targeted retention strategies. The key steps involved in conducting RFM analysis include data preparation, RFM score calculation, and segmentation. By visualizing the results using Python libraries such as Pandas, Matplotlib, and Seaborn, businesses can gain a better understanding of their customer base and develop effective marketing strategies.

RFM analysis is not without its limitations, and it should be supplemented with other data sources and analysis methods to gain a more complete understanding of customer behavior. However, when used in conjunction with other techniques, RFM analysis can be a valuable tool for businesses looking to increase customer loyalty and drive revenue growth.

Overall, RFM analysis is a valuable technique for customer segmentation that can provide businesses with valuable insights into customer behavior. By using Python programming to conduct RFM analysis, businesses can gain a competitive edge in today’s rapidly evolving marketplace.

 

Leave a Reply

Your email address will not be published. Required fields are marked *